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The two-dimensional and axisymmetrical problem of cavitation flow of an ideal incom- 
pressible fluid past an arbitrary body in the presence of a source on the body or in the flow 
are studied. Universal, i.e., independent of the shape of the body, asymptotic (with respect 
to the cavitation number) relations between the resisting force, the length and width of the 
cavity, the cavitation number, and the intensity of the source are found. 

It is proved in [i] that if, in the presence of a continuous flow past a body, a jet of 
fluid is ejected from the body in a direction oriented upstream, then a thrust appears and, 
for the case when the flow past the body occurs according to Kirchhoff's scheme, an example 
is given in which the resistance is two times lower than that of a body without injection but 
with the same asymptotic behavior of the cavity. It is shown in [2] that the replacement of 
the jet by a source gives a good approximation both for the force characteristics and for 
determining the form of the free streamlines. At the same time, modeling a jet flowing out 
of a body by a source makes it much easier to study the problem. 

In [3], based on an exact solution of the two-dimensional problem of cavitation flow 
past a wedge with a source, the law governing the drop in the resistance and the appearance 
of a thrust is analyzed as a function of the intensity of the source and the angle of the 
wedge. 

For axisymmetrical problems, the only theory which up to now has made it possible to 
obtain mathematically well-founded formulas for small cavitation numbers is the asymptotic 
theory of a thin body. According to this theory, the problem reduces, in the leading order 
approximation Iln ~ >> i, to the solution of an ordinary differential equation. In the next 
approximation o << i, the equation turns out to be an integrodifferential equation [4, 5], 
whose solution has not yet been found. 

In [6], numerical solutions for flow past cones based on Ryabushinskii's scheme are 
presented. Two universal relations, which are independent of the angle of the cone and which 
relate the resisting force, the cavitation number, and the elongation of the cavity, are 
presented and approximating formulas are given for them. 

In this work, we formulate a variational principle for cavitation flow past bodies in 
the presence of hydrodynamic singularities. With the help of this principle, we find the 
specific form of the universal relations both for two-dimensional and for axisymmetrical flows 
with a source. In the two-dimensional case, we prove that these relations are asymptotically 
exact for arbitrary bodies. 

i. Variational Principle. We shall examine the surface or contour ~, over which an 
ideal incompressible fluid flows in a stationary manner. The velocity and pressure at in- 
finity are equal to v~ and p~. The flow can contain point singularities, for example, 
sources. The problem is to find the general form of the functional U, whose variation for 
small changes in the boundary D~ would be associated with the work performed by the pressure 
forces on the virtual displacement of the boundary by the relation 

ip- po) (1.1) 

where 6n is the displacement of the surface being varied ~ along the outer normal to the 
body; p is the pressure of the liquid at the boundary ~ which is determined from Bernoulli's 
integral; and Pc is the constant pressure. 
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In the absence of singularities, such a functional was found by Ryabushinskii [7] and is 
expressed in terms of the kinetic energy of the fluid. In the presence of singularities in 
the flow, the kinetic energy of the liquid is represented by a diverging integral. For this 
reason, regularization, which can be performed following [8, 9], is necessary. As a result, 
we obtain 

~ U _ ~ (po __ Pc) d,~ __ ~_~_ (V __ Vo)2d,~ ' (1.2) 

v 

where V is the region enclosed by the surface 3V = 3~; ~ is the region outside of ~V; v is 
the velocity of the fluid flowing over the surface 3V in the presence of singularities; vo 
and po are the velocity and pressure of the potential flow with singularities in the absence 
of the surface 3V; and Pc is the constant pressure on the boundary of the cavity. 

Equations (i.i) and (1.2) permit giving the variational formulation of flow past a cavity 
based on Ryabushinskii's scheme in a flow with arbitrary singularities. 

THEOREM. A cavitation flow, which is uniform at infinity, with arbitrary point singu- 
larities in the flow extremizes the quantity U in the sense that ~U -- 0 for arbitrary varia- 

tions of the free surface on which the pressure of the fluid Pc is constant. 

In the absence of singularities in the flow vo = v~, po = p~, an analogous theorem was 
formulated by Ryabushinskii [7] and is the basis for the proof of the existence theorem for cavi- 
tation flows in both the two- and three-dimensional cases. These proofs can also be extended 
to cavitation flows with singularities in the flow. 

We shall study a cavitation flow which is symmetrical relative to the x axis using 
Ryabushinskii's scheme. A source and a sink of intensity q are situated at the points x = 
--xo and x = xo (Fig. I). For this case, t]~e functional U can be represented in the following 
form (the derivation of this relation is given below): 

U = --  - ~  v i M  --  2Pvooqq~ (Xo) - -  P q ~ o  (Xo' Xo) -}- ( P ~  - -  PH) V, ( 1 . 3 )  

M =  S aP a--~-~ 
off 

where M is the virtual mass of the body V. The functions ~(x) and ~o(xo, x), which are har- 
monic with respect to the variable x in the region Q, approach zero at infinity, while at the 
boundary of the body 3~ they satisfy the conditions 

a~lSn = --arla,, a~01a,2 = --a%la,, (i. 4) 

where ~o is the potential of the source and of the sink for the two-dimensional and axi- 
symmetrical problems, respectively, having the following form: 

~o = ~ "  In  -7"--' r = ~-~ - -  ' 

r+ = [(x + Xo) ~ + y~p/2,  r_ = [(x - -  xo) ~ + u~pl 2. 

It follows from the boundary conditions (1.4) that ~ is the potential of flow past the body V 
moving with a unit velocity, while ~o is expressed in terms of the Green's function. 

Derivation of Eq. (1.3). If the expression for po from Bernoulli's integral is 
substituted into Eq. (1.2), we obtain 
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vo>,::-y+,:- (po-,o-+ +=) <,.+ 
fl v 

The velocities v and Vo depend linearly on v= and q and are represented in the form 

v - -  vo : g r a d ( v ~ ( x ) +  qOo(Xo, x)), Vo = grad(v~x + q%). (1.7) 

Substituting expression (1.7) into (1.6) and transforming to integrals over the boundary 
of the body 3V using the Gauss-Ostrogradskii theorem, we obtain 

U : --  + v~M "-[- (p~ --  Pc) V- -  pvooq[ 1 - -  pqZI~, 

' /+~ o~ ~~ ~ ) d s ,  
l : = - - ' : ~ - . I  \ - ~ +  o"~- n --  = ~ - - -  o 

OV 

= _ I ( ~ ~162 --  % _ ~ )  dS. I ,  T # k o-~-f 0% 
ov 

(l.8) 

that 
From Green's formula for harmonic functions and the boundary conditions (1.4), it follows 

= = % ~ dS, 
,J an u On On 
Ot~ Of~ OV OV 

(0~ (o~ oo , s , , : -y ,  \ an ~ /  " 
ov OV 

In the region ~, the function ~ is harmonic, while ~0 
p o i n t s - - X o  and  Xo. A p p l y i n g  G r e e n ' s  t h e o r e m  t o  a r e g i o n ,  f r o m  w h i c h  s p h e r e s  w i t h  s m a l l  
r a d i u s  R a r e  r e m o v e d ,  a n d  p a s s i n g  t o  t h e  l i m i t  R + 0 ,  we o b t a i n  

11 = 2~(x0), 
A n a l o g o u s l y ,  u s i n g  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 4 )  and  G r e e n ' s  t h e o r e m ~  we o b t a i n  

Substituting Eqs. (1.9) and 

is harmonic everywhere except at the 

( 1 . 9 )  

Is = + . I  { 0% O~o\ (i. I0) ( o 0 : -  +0 : )  ds :*0(x0, x0). 
ov 

(I.I0) into (1.8), we find (1,3), which is what had to be proved. 

2. Variational Method for Solving the Problem of Cavitation Flow Past Body in the 
Presence of a Source. A variational method was proposed in [i0] for calculating cavitation 
flows. For small cavitation numbers, this method permits obtaining asymptotically exact 
equations for both two-dimensional and axisymmetrical problems. This method can also be 
extended to cavitation flows with hydrodynamic singularities. 

We shall examine a symmetrical cavitation flow with a source and a sink at the points 
--Xo, Xo (see Fig. i). For this scheme, the variational equation (i.i), where U is calculated 
according to Eq. (1.3), is applicable. Following [I0], we introduce a two-parameter family of 
surfaces 3V. For the parameters, we select I x and ly (half-length and half-width of the 
cavity, see Fig. i). Then U(/x, /y) is defined as a function of two parameters. In accor- 

dance with the variational equation (i.i), we obtain 

I aU OU (2. i) 
F - -  2 0l x '  O1 v - O '  

w h e r e  F i s  t h e  f o r c e  e x e r t e d  on t h e  b o d y  b y  t h e  l i q u i d .  

A f o r c e  e q u a l  t o  t h e  p r o d u c t  o f  pq b y  t h e  v e l o c i t y  v ' ,  a r i s i n g  f o r  a l l  r e a s o n s  o t h e r  t h a n  
t h e  s o u r c e ,  a c t s  on t h e  s o u r c e ;  t h e r e f o r e  

leO0 (~, =) 
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where v s is the velocity due to a source of unit intensity at a distance 2xo. Because of the 
symmetry of the function @o(Xo, x), the partial derivatives with respect to the first and 
second arguments are equal at the point xo. 

From Eqs. (2.1) and (2.2) we obtain the total force acting on the body with a source 
X = F + F s. In the limiting case when the source is located on the body Xo + Ix, we find 

OM eq~ t OV _ pq9 ( 0r176 0*~ (z~ %) / (2.3) 
, OXo 

We shall use the fact that the cavitation number o << i, and we shall estimate the order of 
magnitude of the terms entering into Eqs. (2.3). For estimates in the two-dimensional prob- 
lem, we can choose the family of ellipses. Then 

ly ~ f 
M=~l~, V=~lxlv, ~p(Xo)=l-~--T__l~ (xo--Vx~__lx +ll,), (2.4) 

*o (zo, zo) .~-..J--i (ln ~ 2r 3 = ~  --lx)' ) 2,~ 2 ~ ~" + O(.o , n - -  z,~/z., 

where the expression for @o(Xo, Xo) is taken from the known solution of the problem of a 
source near a circle of radius R. It follows from Eqs. (2.3) and (2.4) that in the limit 

Xo + ~X 

X t 2Q, Q q : ----~-- = (2.5) 
~ * -  t pvi~,z v 2 

Y 

v%-- v~  ~ ly 
c=2%(t+Q) ~, a =  ~ , %=T~x �9 (2.6) 

From the exact solution of the cavitation problem, given below, we shall find that the quan- 
tity Q is limited from above Q ~ Ko, where the constant K depends only on the shape of the 
body (for plates, for example, the exact lower limit is equal to K = 1/6). Therefore, in the 
leading order approximation o << i, we have o = 2X. 

From here it also follows that in calculating the total force and the degree of elonga- 

tion of the cavity according to Eqs. (2.1)-(2.3), the term quadratic in q can be dropped in 
the functional U: 

U o P 2 M =--  y v =  +(p=--pc)V--2p%oq*(Xo), 
t OUo OUo 

X 2 Ol x' ~ =0. 

~2.7) 

It will be proved below bhat for the family of ellipses in the two-dimensional problem Eqs. 
(2.7) are asymptotically exact with respect to the cavitation number and do not depend on 
the form of the body. 

It is useful to apply Eqs. (2.7) to the calculation of axisymmetrical cavitation flows, 
using the family of ellipsoids. 

The virtual mass M of the ellipsoid and the potential of flow @ past it are known to 
satisfy the following equations [ii]: 

M=Vm(x), O=/x/(~- ~ ,  %), m=--I+(I--X-~)(A(x)--X-~) -1, (2.8) 

i (~, x) = (A (Z) -- Z-D -~ ( ~ ~ + (~ - ~)~/~ 'l ~2 (1 -- X2) '/~" In -- 11 ' 
- (I - x~)l/~ 

4~ lxl~ ' A (%) = (1 --  Z~) -I/~ an (X -1 + V ~ - - : r  0 ,  v = T x = tvllx. 
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When the source is located on the surface of the body Xo = Ix, the following relations are 
valid: 

l~aM/Ol  x = V (m  - -  z m ' ) ,  lyOM/Oly = V (2m + %m'), ( 2 . 9 )  

1(t, %)== --re(Z), O0/Oly  = - - m ' ,  Oq)/Ol x = - -5  - -  m + ~m' ,  

m '  = din~dE,. 

Substituting Eqs. (2.8) into (2.7), with the help of Eqs. (2.9) we obtain 

X 
c , -  - -  - x m ' - 2 Q ( t - m + X m ' ) ,  

T Pv~ 
t , 3 a = m + T % m - - T Q E m ' ,  Q =  q 

2 ZtPvooly 

( 2 . 10 )  

For Q = 0 these equations coincide with the equations found previously in [I0] using the same 
method and they approximate well the numerical solutions. 

It is easy to obtain the asymptotic form of the relations (2.10) with a small cavitation 
number with the help of Eqs. (2.8): 

(; +) 
For Q = O, o << i, in leading order the asymptotic form of these formulas agrees with 
Garahedian's asymptotic form [7]. 

3. Derivation of Asymptotic Formulas from the Exact Solution. We shall prove that 
Eqs. (2.6), obtained from the variational principle, are asymptotically exact. For this, we 
write out the system of equations (found by a well-known method [12]), giving the complete 
solution of the problem of cavitation flow past an arbitrary symmetrical contour with a 
source located on it according to Efros's scheme. Figures 2 and 3 show the plane of the flow 
z and the auxiliary plane ~. The derivatives of the complex potential W with respect to the 
variables z and ~ have the form 

v~ d z -  

d W  
d~ - N %  

I dW (~ -4- i) (~ - -  ih) (~h - -  i) ( ~ - -  ik) (~k - -  ~) e F(~) ( 3 .  l )  
(~ - 0 (~ + ~a) (~h + 0 (~ + ~k) (~k + 0 ' 

F (~) = i A l ~  - -  - ~  iAa~'~ - -  . . . ,  

(~2 _ 5) (~ + h 2) (h~ ~ + t) (~2 + ks) ( k ~  + 5) 
(~ + ~)~ ( ~  + t) ~ (~ + 5) ' 

where ik and ih are the coordinates of the images of critical points inside the flow; ic is 
the coordinate of the image of a point at infinity in the flow in the complex ~ plane (see 
Fig. 3). For k = i, Eqs. (3.1) coincide with the well~known equations [12] for flow past 
a curvilinear arc according to Efros's scheme. 

The coefficients A n determine the form of the contour. To Eqs. (3.1) we must add also 
Will's condition 

Re i - ~ l n  =0 ,  ~ = •  

which  i s  n e c e s s a r y  so t h a t  t h e  c u r v a t u r e  o f  t h e  f r e e  s u r f a c e  a t  t h e  p o i n t s  h and B be f i n i t e ,  
as  w e l l  a s  t h e  c o n d i t i o n  

res [ d-~-; ~= ic] =0, (3.2) 

which indicates that the function z(~) after circumscribing the point z = ic returns to its 
initial value. 
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~ ~ ~ _ I  ~ " ~  H 

p A E B 

Fig. 2 Fig. 3 

The intensity of the source q and the flow rate in the stream ~ are determined from the 
equations 

(h  ~ - 1) ~ 6r - I )  ~ q = ~ n 0  (r0~ [~; ~=~])=N,;r ( ? _ t )  ~ 

= - - - ~ r e s  ~ ;  $ = 0  = A v o n  c4 , 

(3.3) 

and the cavitation number o is related to the parameters of the problem c, h, k, A n by the 

relation 
A c A3c3 

l dW (ic) l - - t o .~1 , - l / 2 - -  (c + I) (c - -  h) (oh - -  I) (c - -  k) (ok - -  l )e ( 3 . 4 )  
% 4z I - ~  7- ~ - (c - -  1) (~ + h) (ch + t) (c + k) (ok + t) 

The limit o + 0 corresponds to Kirchhoff's scheme and the points H and E approach, in this 
case, the point C at infinity. In the ~ plane this corresponds to the fact that the numbers 
c and h approach zero. It can therefore be assumed that for ~ << i, the parameter c << i. 

We choose c to be an independent small parameter and we shall seek the dependences h(c) and 
o(c) in the form of expansions with respect to this parameter 

h = hlc + h~c~ + . . . ,  a = ~1c + ~2c ~ + . . .  (3.5) 

Using Eqs. (3.1), we obtain 

dz 
d~-- 

N ($2 __ t)  (~ --~ ik) 2 ($h + 0 2 ($ @ ik) 2 (~k --~ 0 2 
$ (~ + ic) 2 ($ - -  ic) 2 (~ "Jr 0 2 (c~'~ 2 -~- l)2e F 

(3.6) 

At the point r = ic, the function dz/d~ has a second-order pole, 
point is equal to the derivative of the factor multiplying (~ -- ic) -2. 
tion (3.2) assumes the form 

and the residue at this 
From here, the condi- 

25 2 2h 2 2k 
- -  F r 

l 2 4c~$ 2 - - C - ~ - ~ - ~ - ~  =o, ~=~. 

Substituting into this equation the first expansion in (3.5) and equating the coefficients 
of c -I and c ~ , we obtain 

h 1 = O, h~ -~  a = k "{- t / k  - -  I -[-- A 1 / 2 .  ( 3 . 7 )  

S u b s t i t u t i n g  t h e  e x p a n s i o n  f o u n d  f o r  h ( c )  i n t o  ( 3 . 4 )  a n d  t a k i n g  i n t o  a c c o u n t  t e r m s  o f  
o r d e r  c ,  we o b t a i n  t h e  e x p a n s i o n  o f  o ( c ) :  

i - -  (1 /2 )~  + . . . .  i + ( - -  A 1 + 2 - -  2 a  - -  2 / k  .--]- 2k)c  + .. . .  (~ = Sac. ( 3 . 8 )  

I t  i s  a l s o  i n t e r e s t i n g  t o  c a l c u l a t e  t h e  l e n g t h  2 l x  a n d  t h e  w i d t h  2~y o f  t h e  c a v i t y .  F o r  
t h i s ,  we d e f i n e  a p o i n t  P i n  " t h e  f r e e  j e t  a t  w h i c h  t h e  v e l o c i t y  o f  t h e  l i q u i d  i s  p a r a l l e l  t o  
t h e  x a x i s .  We s h a l l  c a l l  t h e  d i s t a n c e  f r o m  t h e  p o i n t  P t o  t h e  p l a t e  a l o n g  t h e  h o r i z o n t a l  l x 
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and the distance of this point from the axis of symmetry ly (see Fig. 2). The coordinates 
of the point P in the ~ plane can be determined from the condition Im dW/dz = 0. In the 
complex ~ plane, this point is determined by the real number t, which approaches zero as 

§ 0. For this reason, we seek t in the form of the expansion t = t~c + t2c 2 +... 

Retaining the leading terms in the expansion in powers of c in Eq. (3.1), we find 

' 'uc dW__idz -~(2 t--~ --2ih--~--2 t"~-I --2tzk-}-iA'tl) 1 ik , -- 

From the condition that the imaginary part of this expression is equal to zero, we obtain 

t = e + . . .  (3.9) 

The half-length lx and the half-width ly of the cavity for small ~ can be determined 
from the equation 

c 

~ dz (3. i0) l= -- il v t -  dt, 
J dt  
1 

w h e r e  t h e  i n t e g r a l  i s  t h e  i n t e g r a l  a l o n g  t h e  r e a l  a x i s  o f  t h e  f u n c t i o n  ( 3 . 6 ) ,  w h i c h  c a n  b e  
represented in the form 

dz N O  ( t ,  c) 
"dr - t (t ~ + ~)2 , 

(t ~ - 1) (t + ~h) 2 (th + 0 ~ (t + ~k) 2 (tk + 0 
O =  (t + ~)~ (t~c 2 + 1) 2 e F(t) 

�9 ----- ~PO -{- dglt + O: t~" + Oa t3 -'~ r(e, t)t 4, 

ePo = h~kS, Ox = --2k2hi + ...,  egs = --kS + "", Oa = 2~k2a + "", 

(3.11) 

where the dots indicate higher-order infinitesimals. The coefficient of the remainder r(c, t ~ 
i s  a c o n t i n u o u s  f u n c t i o n  i n  t h e  c l o s e d  r e g i o n  0 ~ t % 1 ,  O ~  c ~ Co a n d  i s  t h e r e f o r e  b o u n d e d .  

Substituting the expansion (3.11) into (3.10), we obtain 

I =Nf ( f f ' k s - L ~ t 2 ) m d t  ~ Nk~ (3.12) 
= t (t2 + c2)2 ~ 4c'--/-' 

1 
c 

ly = N (2kSht  - -  2k2at 3) dt  ~ Nk2___.~a X = = 4 a c .  

t (t  2 + c~) 2 c ' t x 
1 

The asymptotic equation for the total resisting force can be obtained from the general 
equation [13], found from the law of the change of momentum 

2 (5 - -  q) 2~va  ( 3 . 1 3 )  
(l/2) pv~ v~ + v~2 " 

For the flow from the source q and the flow of the return stream 5, we obtain from Eqs. (3.3) 
and (3.12) up to leading order terms 

q (k2-- t)2 c 8 (3.14) 
Q = ~ v ~ l y  - k2a ' ~v~,,ly - -  ac. 

From here we obtain the equation for the force (2.6). 

4. Analysis of Asymptotic Equations. We choose as the determining parameters the veloc- 
ity at infinity v~, the flow rate of the source q which models the jet oriented along the 
flow, the cavitation number o, and the maximum midsection of the cavity ly. The remaining 
quantities (the resisting force X, the length of the cavity lx, and the flow rate of Efros's 
return stream d) can be calculated from these data. Introducing the dimensionless quantities, 
referred to the maximum midsection, 
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o,,~- 

o.~ 

i -l----I i 

O,4 0,8 k 

Fig. 4 

q , ~ =  8 z~ (4.1) 
X ' Q =  ~v~ly ~vooly' %-- l x c, = "+ pv~ly 

and e x p r e s s i n g  the  p a r a m e t e r  c i n  t e rms  o f  o a c c o r d i n g  to  Eqs.  ( 3 . 8 ) ,  we o b t a i n  t he  a s y m p t o t i c  
e q u a t i o n s  ( 3 . 1 2 ) - ( 3 . 1 4 )  i n  the  f o l l o w i n g  compact  fo rm:  

a --2Q, e ~ (k2-- i) 2<~ + ~ (4.2) 
~*= '-7" z='-2-,  ~ = T '  Q -  (sk2~ ~) , ~ = k +  - - i +  ~0 .  

The first three expressions are universal for cavities of arbitrary form (with the exception 
of the degenerate case a = 0). An important property of the cavity is the fact that the de- 
gree of elongation of the cavity i/• does not depend on the intensity of the source. 

The form of the cavity affects only the change in the quantity Q. When the quantity Q 
reaches its maximum value Qmax, the resistance coefficient c, will be minimum. An analysis of 
the equation for Q (4.2) shows that, for cavities with the parameter --2 < A~ < 2 (including 
for the plate AI = 0), the largest value of the source is determined by the expression Qmax = 
(a/8)(l - (2 - AI)2/16) -~. For cavities with the parameter AI > 2, we have Qmax = ~/8, k = 0. 
For the last case A~ < --2, the quantity a vanishes for some value 0 < k < i, the cavities are 
compressed into the midsection, and the resisting force becomes a thrust. 

The parameter k determines the posit$on of the critical point in front of the body at 
which the velocity vanishes. For k = i, when there is no source, the critical point is 
located on the body Q = 0, c, = ~/2. As k is decreased, the critical point moves away from 
the body and in the limit k + 0 it moves off to infinity. In this limiting case, Q = g/8, 
c, = 0/4, i.e., the resistance drops by a factor of two. This example corresponds to the 
case noted in [i]. 

From Eqs. (4.2), we can obtain an asymptotic law for the expansion of the cavity for ~ = 
0, if we write the equation for the resisting force in the dimensionless form 

. I$ (4.3) 
x = -5- ~-~ - P'~q" 

For  q = 0, we o b t a i n  t h e  p a r a b o l i c  law f o r  t he  e x p a n s i o n  o f  t he  c a v i t y  found by S. A. C h a p l y g i n  
( i n  t he  l i m i t  o + 0, t he  e l l i p t i c a l  c a v i t y  t r a n s f o r m s  i n t o  a p a r a b o l i c  c a v i t y  w i t h  t he  pa ram-  
e t e r  of  t he  p a r a b o l a  l~ / lx ) .  The g e n e r a l  form of  Eq. (4 .3 )  i s  o b t a i n e d  i n  [ 1 3 ] .  

It should be noted that Chaplygin's law is not universal. Bodies with a special form, for 
which AI = --2 and for which the asymptotic behavior of the free streamlines is entirely 
different (they converge at infinity), exist. Without the source, the resistance of such 
bodies is equal to zero, while in the presence of a source a thrust force acts on the body. 
The form of bodies in the degenerate case is easy to construct, starting from the exact equa- 
tion (3.6), by selecting AI from the equation a = 0 and the remaining coefficients arbitrarily. 

Curves 1 and 2 in Fig. 4 show the dependence of c,/o, Q/o on k for a plate (At = 0). 
For k = 0, the intensity of the source Q = 0/8 and the resistance coefficient is equal to a/4, 
i.e., a factor of two smaller than with Q = 0. In the limit ~ + 0, this corresponds to the 
case noted in [i]. 
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As is evident from Fig. 4, the lowest resistance for a fixed midsection c, = o/6 is 
obtained with Q = o/6. 

It is interesting to note that for Q > 0/8, one and the same value of the source inten- 
sity corresponds to two flow regimes. In addition, for all permissible source intensities, 
the quantity X, up to small orders of o, does not change. 

In the absence of a source, from Eqs. (4.2) we obtain the results AI # --2, c, = o/2, 
X = o/2, ~ = ~/8, referring to flow past arbitrary contours according to Efros's classical 
scheme. 

We have proved that the form of the relations (2.11) is analogous to the corresponding 
relations in the two-dimensional problem. In both cases, the resistance coefficient, referred 
to the midsection, decreases as Q increases and the degree of elongation of the cavity I/X 
does not depend on the source intensity q. An important feature of the axisymmetrical prob- 
lem is that for practical calculations, together with the asymptotically leading term of order 
X 21n X, the term of order X 2 must also be taken into account, even for very small cavitation 
numbers. 
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